Tag Archives: cylinder nut

China Custom High Quality 700 Bar 100 Ton Cll Series Lock Nut Hydraulic Cylinder vacuum pump belt

Product Description

 

Product Description

 

KASHON Lock Nut Cylinders provide mechanical load holding for extended periods of time. Available in Low Height, Lightweight or High Tonnage models, with capacities from 20 tons up to 1000 tons and stroke lengths from 50 mm to 300 mm. There is a lock nut cylinder to meet your every requirement and industrial application.
1. Max Working Pressure: 700 Bar;Single acting, load return;
2. Supports loads mechanically for extended periods enabling hydraulic pressure release;
3. Base mounting holes are standard on all models;
4. Unique loading design enables it to bear unbalanced loads up to 3% capacity with no damage to the cylinder;
5. Over-pressurisation is prevented due to built in safety valves;
6. The cylinder piston rod is protected from damage by the interchangeable hardened saddles;
7. The stop ring avoids the piston rod over-reaching and enables maximum cylinder extension;
8. The dust ring prevents contamination and enhances longer cylinder life

Product Parameters

 

 

 

Application

Other Products

Company Information

FAQ

 

Q1: How to make payment?
A1: Paypal, Western Union, Moneygram or T/T transfer. 

Q2: How long does it take to process orders?
A2: It usually takes 10-14 business days to process most orders for no stock. If stock available, it  will  only take 2-3 business days.

Q3: What is the packing method?
A3: For small piece, we use carton box; for big piece, we use exporting grade plywood case.

Q4: How to ship?
A4: Sea freight, Air freight or International express (DHL, FEDEX, UPS…) all are available.

Q5: What is the warranty?
A5: 12 months against B/L date.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO, CE
Condition: New
Automatic Grade: Hydraulic
Usage: Petroleum, Construction
Type: Hydraulic Cylinder
Color: Yellow or Customized
Samples:
US$ 600/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders compare to other methods of force generation like electric motors?

Hydraulic cylinders and electric motors are two different methods of force generation with distinct characteristics and applications. While both hydraulic cylinders and electric motors can generate force, they differ in terms of their working principles, performance attributes, and suitability for specific applications. Here’s a detailed comparison of hydraulic cylinders and electric motors:

1. Working Principle:

– Hydraulic Cylinders: Hydraulic cylinders generate force through the conversion of fluid pressure into linear motion. They consist of a cylinder barrel, piston, piston rod, and hydraulic fluid. When pressurized hydraulic fluid enters the cylinder, it pushes against the piston, causing the piston rod to extend or retract, thereby generating linear force.

– Electric Motors: Electric motors generate force through the conversion of electrical energy into rotational motion. They consist of a stator, rotor, and electromagnetic field. When an electrical current is applied to the motor’s windings, it creates a magnetic field that interacts with the rotor, causing it to rotate and generate torque.

2. Force and Power:

– Hydraulic Cylinders: Hydraulic cylinders are known for their high force capabilities. They can generate substantial linear forces, making them suitable for heavy-duty applications that require lifting, pushing, or pulling large loads. Hydraulic systems can provide high force output even at low speeds, allowing for precise control over force application. However, hydraulic systems typically operate at lower speeds compared to electric motors.

– Electric Motors: Electric motors excel in providing high rotational speeds and are commonly used for applications that require rapid motion. While electric motors can generate significant torque, they tend to have lower force output compared to hydraulic cylinders. Electric motors are suitable for applications that involve continuous rotary motion, such as driving conveyor belts, rotating machinery, or powering vehicles.

3. Control and Precision:

– Hydraulic Cylinders: Hydraulic systems offer excellent control over force, speed, and positioning. By regulating the flow of hydraulic fluid, the force and speed of hydraulic cylinders can be precisely controlled. Hydraulic systems can provide gradual acceleration and deceleration, allowing for smooth and precise movements. This level of control makes hydraulic cylinders well-suited for applications that require precise positioning, such as in industrial automation or construction equipment.

– Electric Motors: Electric motors also offer precise control over speed and positioning. Through motor control techniques such as varying voltage, frequency, or pulse width modulation (PWM), the rotational speed and position of electric motors can be accurately controlled. Electric motors are commonly used in applications that require precise speed control, such as robotics, CNC machines, or servo systems.

4. Efficiency and Energy Consumption:

– Hydraulic Cylinders: Hydraulic systems can be highly efficient, especially when properly sized and designed. However, hydraulic systems typically have higher energy losses due to factors such as fluid leakage, friction, and heat generation. The overall efficiency of a hydraulic system depends on the design, component selection, and maintenance practices. Hydraulic systems require a hydraulic power unit to pressurize the hydraulic fluid, which consumes additional energy.

– Electric Motors: Electric motors can have high efficiency, especially when operated at their optimal operating conditions. Electric motors have lower energy losses compared to hydraulic systems, primarily due to the absence of fluid leakage and lower friction losses. The overall efficiency of an electric motor depends on factors such as motor design, load conditions, and control techniques. Electric motors require an electrical power source, and their energy consumption depends on the motor’s power rating and the duration of operation.

5. Environmental Considerations:

– Hydraulic Cylinders: Hydraulic systems typically use hydraulic fluids that can pose environmental concerns if they leak or are not properly disposed of. The choice of hydraulic fluid can impact factors such as biodegradability, toxicity, and potential environmental hazards. Proper maintenance and leak prevention practices are essential to minimize the environmental impact of hydraulic systems.

– Electric Motors: Electric motors are generally considered more environmentally friendly since they do not require hydraulic fluids. However, the environmental impact of electric motors depends on the source of electricity used to power them. When powered by renewable energy sources, such as solar or wind, electric motors can offer a greener solution compared to hydraulic systems.

6. Application Suitability:

– Hydraulic Cylinders: Hydraulic cylinders are commonly used in applications that require high force output, precise control, and durability. They are widely employed in industries such as construction, manufacturing, mining, and aerospace. Hydraulic systems are well-suited for heavy-duty applications, such as lifting heavy objects, operating heavy machinery, or controlling large-scale movements.

– Electric Motors: Electric motors are widely used in various industries and applications that require rotational motion, speed control, and precise positioning. They are commonly found in appliances, transportation, robotics, HVAC systems, and automation. Electric motorsare suitable for applications that involve continuous rotary motion, such as driving conveyor belts, rotating machinery, or powering vehicles.In summary, hydraulic cylinders and electric motors have different working principles, force capabilities, control characteristics, efficiency levels, and application suitability. Hydraulic cylinders excel in providing high force output, precise control, and durability, making them ideal for heavy-duty applications. Electric motors, on the other hand, offer high rotational speeds, precise speed control, and are commonly used for applications that involve continuous rotary motion. The choice between hydraulic cylinders and electric motors depends on the specific requirements of the application, including the type of motion, force output, control precision, and environmental considerations.

hydraulic cylinder

Ensuring Stable Performance of Hydraulic Cylinders Under Fluctuating Loads

Hydraulic cylinders are designed to provide stable performance even under fluctuating loads. They achieve this through various mechanisms and features that allow for efficient load control and compensation. Let’s explore how hydraulic cylinders ensure stable performance under fluctuating loads:

  1. Piston Design: The piston inside the hydraulic cylinder plays a crucial role in load control. It is typically equipped with seals and rings that prevent leakage of hydraulic fluid and ensure effective transfer of force. The piston design may incorporate features such as stepped or tandem pistons, which provide enhanced load-bearing capabilities and improved stability by distributing the load across multiple surfaces.
  2. Cylinder Cushioning: Hydraulic cylinders often incorporate cushioning mechanisms to minimize the impact and shock caused by fluctuating loads. Cushioning can be achieved through various methods, such as adjustable cushion screws, hydraulic cushioning valves, or elastomeric cushioning rings. These mechanisms slow down the piston’s movement near the end of the stroke, reducing the impact and preventing sudden stops that could lead to instability.
  3. Pressure Compensation: Fluctuating loads can result in pressure variations within the hydraulic system. To ensure stable performance, hydraulic cylinders are equipped with pressure compensation mechanisms. These mechanisms maintain a consistent pressure level in the system, regardless of load changes. Pressure compensation can be achieved through the use of pressure relief valves, compensating pistons, or pressure-compensated flow control valves.
  4. Flow Control: Hydraulic cylinders often incorporate flow control valves to regulate the speed of the cylinder’s movement. By controlling the flow rate of hydraulic fluid, the cylinder’s motion can be adjusted to match the changing load conditions. Flow control valves allow for smooth and controlled movement, preventing abrupt changes that could lead to instability.
  5. Feedback Systems: To ensure stable performance under fluctuating loads, hydraulic cylinders can be integrated with feedback systems. These systems provide real-time information on the cylinder’s position, velocity, and force. By continuously monitoring these parameters, the hydraulic system can make immediate adjustments to maintain stability and compensate for load fluctuations. Feedback systems can include position sensors, pressure sensors, or load sensors, depending on the specific application.
  6. Proper Sizing and Selection: Ensuring stable performance under fluctuating loads starts with proper sizing and selection of hydraulic cylinders. It is crucial to choose cylinders with appropriate bore size, rod diameter, and stroke length to match the anticipated load conditions. Oversized or undersized cylinders can lead to instability and reduced performance. Proper sizing also involves considering factors such as the required force, speed, and duty cycle of the application.

In summary, hydraulic cylinders ensure stable performance under fluctuating loads through features such as piston design, cushioning mechanisms, pressure compensation, flow control, feedback systems, and proper sizing and selection. These mechanisms and considerations allow hydraulic cylinders to provide consistent and controlled movement, even in dynamic load conditions, resulting in reliable and stable performance.

hydraulic cylinder

Which industries and machinery commonly use hydraulic cylinders for power transmission?

Hydraulic cylinders are widely used in various industries and machinery for power transmission due to their ability to generate high force, precise control, and reliable operation. They play a crucial role in converting hydraulic energy into mechanical force and motion. Here are the detailed industries and machinery that commonly utilize hydraulic cylinders for power transmission:

1. Construction and Heavy Equipment:

– Hydraulic cylinders are extensively used in the construction industry for tasks involving heavy lifting, pushing, and positioning. They are employed in cranes, excavators, loaders, bulldozers, and other heavy equipment to lift and move heavy loads, operate attachments, and manipulate construction materials. Hydraulic cylinders provide the necessary force and control for tasks such as lifting and lowering buckets, extending and retracting booms, and tilting blades.

2. Material Handling and Logistics:

– In material handling and logistics applications, hydraulic cylinders are vital components for the movement and manipulation of goods. They are used in forklifts, stackers, palletizers, and conveyor systems to lift, lower, and position loads with precision. Hydraulic cylinders enable the efficient transfer of heavy objects, facilitate stacking and sorting operations, and contribute to the smooth operation of material handling equipment.

3. Agriculture and Farming:

– The agricultural industry relies on hydraulic cylinders for various tasks in farming equipment. Tractors, harvesters, sprayers, and loaders utilize hydraulic cylinders to perform functions such as lifting and lowering implements, adjusting the position of attachments, and steering operations. Hydraulic cylinders enable efficient and precise control in tasks like plowing, tilling, harvesting, and baling, enhancing productivity and convenience in agricultural operations.

4. Mining and Extraction:

– Hydraulic cylinders are extensively utilized in the mining and extraction industry for their ability to handle heavy loads and operate in challenging environments. They are employed in mining equipment such as dump trucks, loaders, and excavators for tasks like ore extraction, rock breaking, and material transport. Hydraulic cylinders provide the force required for excavating, loading, and dumping operations, contributing to the efficiency and productivity of mining operations.

5. Manufacturing and Industrial Machinery:

– Hydraulic cylinders are an integral part of various manufacturing and industrial machinery. They are utilized in presses, stamping machines, injection molding machines, and metal forming equipment to apply force for shaping, bending, and pressing operations. Hydraulic cylinders enable precise control over the force and speed required for manufacturing processes, ensuring accurate and consistent results.

6. Automotive and Transportation:

– Hydraulic cylinders are employed in the automotive and transportation industry for a range of applications. They are used in vehicle lifting systems, such as car lifts and hydraulic jacks, for maintenance and repairs. Hydraulic cylinders are also utilized in bus doors, truck tailgates, and cargo handling systems to provide controlled movement and positioning. Additionally, hydraulic suspension systems in trucks, buses, and trailers use hydraulic cylinders for load leveling and stability.

7. Aerospace and Aviation:

– The aerospace and aviation industry relies on hydraulic cylinders for various applications, including aircraft landing gear, wing flaps, and flight control systems. Hydraulic cylinders provide the necessary force and precise control for extending and retracting landing gear, adjusting wing surfaces, and actuating control surfaces. They contribute to the safe and efficient operation of aircraft, ensuring reliable performance during takeoff, landing, and flight maneuvers.

8. Marine and Offshore:

– Hydraulic cylinders are utilized in marine and offshore equipment for a wide range of tasks. They are found in ship and boat steering systems, hatch covers, cranes, winches, and anchor handling equipment. Hydraulic cylinders enable precise control and powerful force transmission in maritime applications, supporting navigation, cargo handling, and offshore operations.

In summary, hydraulic cylinders are commonly used in industries such as construction, material handling, agriculture, mining, manufacturing, automotive, aerospace, marine, and more. They are integral components in machinery and equipment that require reliable power transmission, precise control, and the ability to handle heavy loads. The versatile nature of hydraulic cylinders allows them to be adapted to various applications, contributing to increased efficiency, productivity, and safety in numerous industries.

China Custom High Quality 700 Bar 100 Ton Cll Series Lock Nut Hydraulic Cylinder   vacuum pump belt	China Custom High Quality 700 Bar 100 Ton Cll Series Lock Nut Hydraulic Cylinder   vacuum pump belt
editor by CX 2024-02-06

China Hot selling Cll Type Single Acting Load Return Large Tonnage Lock Nut Hydraulic Cylinder vacuum pump design

Product Description

                                         Single Acting Hydraulic Cylinder with Lock Nut Cll-2Nm);
•Hydraulic bolt tensioner (M24-M600); Hydraulic pullers;
•Hydraulic pumps, manual and electric type (max up to 4000bar);
•Integrated hydraulic lifting system solutions ( 4-99 points lifting system for house translation or leveling, bridge supporting and tank welding supporting)
•Hydraulic nut and couplings. (M50-Tr1000), hydraulic hose
Our products have been widely used in industrial field such as steel plant, cement industry, chemical and refinery, bridge, railway construction and maintenance.
 
WHY DO YOU NEED SOV? 
Q1: What’s the brand name of your products?
A: Own brand “SOV”, WE ARE GERMANY OWNED FACTORY. OEM is also available as required.     
Q2: Hydraulic cylinder internal leakage?
A: There are 3 main reasons causing internal leakage: Overload, polishing is not well controlled, bad seal kits. As is known to all, vehicles in China are often overload, our products all designed to bear the overload power. We have numerical control machine to assure the polish processing .And we use the imported seals to meet customers’ demands.   
Q3: Does your piston rod get ruptured easily?
A: Hard chrome plating quenched and tempered 45# steel for piston rod to assure sufficient hardness and toughness.
Q4: Is your design reasonable? What about your product safe coefficient?
A: We have R&D team with abundant design experience. We also established production, education, and research cooperation with universities. Rest assured.
Q5: How about the delivery time?
A: Over 1000 sets advanced equipments to meet customer’s large demand in short delivery time. Generally, it’s 7-20 days.
Q6: What’s the after-service?
A: If the quality can’t meet your requirement, we will pay all your lost and offer technical support to solve your problem.

After-sales Service: Online Support
Warranty: 1 Years
Type: Hydraulic Jack
Structure: Hydraulic Jack
Capacity (Load): 200t
Power Source: Hydraulic
Samples:
US$ 1133/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders handle the challenges of precise positioning and control?

Hydraulic cylinders are designed to handle the challenges of precise positioning and control with a combination of engineering principles and advanced control systems. These challenges often arise in applications where accurate and controlled movements are required, such as in industrial automation, construction, and material handling. Here’s a detailed explanation of how hydraulic cylinders overcome these challenges:

1. Fluid Power Control:

– Hydraulic cylinders utilize fluid power control to achieve precise positioning and control. The hydraulic system consists of a hydraulic pump, control valves, and hydraulic fluid. By regulating the flow of hydraulic fluid into and out of the cylinder, operators can control the speed, direction, and force exerted by the cylinder. The fluid power control allows for smooth and accurate movements, enabling precise positioning of the hydraulic cylinder and the attached load.

2. Control Valves:

– Control valves play a crucial role in handling the challenges of precise positioning and control. These valves are responsible for directing the flow of hydraulic fluid within the system. They can be manually operated or electronically controlled. Control valves allow operators to adjust the flow rate of the hydraulic fluid, controlling the speed of the cylinder’s movement. By modulating the flow, operators can achieve fine control over the positioning of the hydraulic cylinder, enabling precise and accurate movements.

3. Proportional Control:

– Hydraulic cylinders can be equipped with proportional control systems, which offer enhanced precision in positioning and control. Proportional control systems utilize electronic feedback and control algorithms to precisely regulate the flow and pressure of the hydraulic fluid. These systems provide accurate and proportional control over the movement of the hydraulic cylinder, allowing for precise positioning at various points along its stroke length. Proportional control enhances the cylinder’s ability to handle complex tasks that require precise movements and control.

4. Position Feedback Sensors:

– To achieve precise positioning, hydraulic cylinders often incorporate position feedback sensors. These sensors provide real-time information about the position of the cylinder’s piston rod. Common types of position feedback sensors include potentiometers, linear variable differential transformers (LVDTs), and magnetostrictive sensors. By continuously monitoring the position, the feedback sensors enable closed-loop control, allowing for accurate positioning and control of the hydraulic cylinder. The feedback information is used to adjust the flow of hydraulic fluid to achieve the desired position accurately.

5. Servo Control Systems:

– Advanced hydraulic systems employ servo control systems to handle the challenges of precise positioning and control. Servo control systems combine electronic control, position feedback sensors, and proportional control valves to achieve high levels of accuracy and responsiveness. The servo control system continuously compares the desired position with the actual position of the hydraulic cylinder and adjusts the flow of hydraulic fluid to minimize any positional error. This closed-loop control mechanism enables the hydraulic cylinder to maintain precise positioning and control, even under varying loads or external disturbances.

6. Integrated Automation:

– Hydraulic cylinders can be integrated into automated systems to achieve precise positioning and control. In such setups, the hydraulic cylinders are controlled by programmable logic controllers (PLCs) or other automation controllers. These controllers receive input signals from various sensors and use pre-programmed logic to command the hydraulic cylinder’s movements. The integration of hydraulic cylinders into automated systems allows for precise and repeatable positioning and control, enabling complex sequences of movements to be executed with high accuracy.

7. Advanced Control Algorithms:

– Advancements in control algorithms have also contributed to the precise positioning and control of hydraulic cylinders. These algorithms, such as PID (Proportional-Integral-Derivative) control, adaptive control, and model-based control, enable sophisticated control strategies to be implemented. These algorithms consider factors such as load variations, system dynamics, and environmental conditions to optimize the control of hydraulic cylinders. By employing advanced control algorithms, hydraulic cylinders can compensate for disturbances and achieve precise positioning and control over a wide range of operating conditions.

In summary, hydraulic cylinders overcome the challenges of precise positioning and control through the use of fluid power control, control valves, proportional control, position feedback sensors, servo control systems, integrated automation, and advanced control algorithms. By combining these elements, hydraulic cylinders can achieve accurate and controlled movements, enabling precise positioning and control in various applications. These capabilities are essential for industries that require high precision and repeatability in their operations, such as industrial automation, robotics, and material handling.

hydraulic cylinder

Utilizing Hydraulic Cylinders in Conjunction with Alternative Energy Sources

Hydraulic cylinders can indeed be used in conjunction with alternative energy sources. The versatile nature of hydraulic systems allows them to be integrated with various alternative energy technologies to enhance efficiency, control, and power generation. Let’s explore some examples of how hydraulic cylinders can be utilized alongside alternative energy sources:

  1. Hydraulic Energy Storage: Hydraulic cylinders can be employed in energy storage systems that utilize alternative energy sources such as renewable sources (e.g., solar or wind) or waste energy recovery. These systems convert excess energy into hydraulic potential energy by pumping fluid into a high-pressure accumulator. When the energy is needed, the pressurized fluid is released, driving the hydraulic cylinder and generating mechanical power.
  2. Wave and Tidal Energy Conversion: Hydraulic cylinders can be utilized in wave and tidal energy conversion systems. These systems harness the power of ocean waves or tidal currents and convert it into usable energy. Hydraulic cylinders, along with associated pumps and valves, can be used to capture and control the energy from the waves or tides, driving the cylinders and generating mechanical power or producing electricity.
  3. Hydroelectric Power Generation: Hydraulic cylinders play a crucial role in traditional hydroelectric power generation. However, alternative approaches such as small-scale or micro-hydropower systems can also benefit from hydraulic cylinders. These systems utilize natural or man-made water flows to drive turbines connected to hydraulic cylinders, which then convert the hydraulic energy into mechanical power or electricity.
  4. Hydraulic Actuation in Wind Turbines: Hydraulic cylinders can be employed in wind turbines to enhance performance and control. For example, hydraulic pitch control systems use hydraulic cylinders to adjust the pitch angle of wind turbine blades, optimizing their aerodynamic performance based on wind conditions. This allows for efficient power generation and protection against excessive wind loads.
  5. Geothermal Energy Extraction: Geothermal energy extraction involves utilizing the natural heat from the Earth’s interior to generate power. Hydraulic cylinders can be utilized in geothermal systems to control and regulate fluid flow, allowing for efficient extraction and utilization of geothermal energy. They can also be used in geothermal heat pumps for heating and cooling applications.

In summary, hydraulic cylinders can be effectively utilized in conjunction with alternative energy sources to enhance energy storage, power generation, and control. Whether it’s through hydraulic energy storage systems, wave and tidal energy conversion, hydroelectric power generation, hydraulic actuation in wind turbines, or geothermal energy extraction, hydraulic cylinders offer versatile and efficient solutions for harnessing and utilizing alternative energy sources.

hydraulic cylinder

Can you provide real-world examples of machinery that heavily rely on hydraulic cylinders?

Hydraulic cylinders are widely used in various industries and applications due to their ability to provide powerful and precise linear motion. They play a crucial role in enabling the operation of heavy machinery that requires controlled force and movement. Here are some real-world examples of machinery that heavily rely on hydraulic cylinders:

1. Construction Equipment:

– Hydraulic cylinders are extensively used in construction machinery, such as excavators, bulldozers, loaders, and cranes. These machines rely on hydraulic cylinders to perform tasks like lifting heavy loads, extending and retracting booms, tilting buckets, and controlling the movement of various components. Hydraulic cylinders provide the power and precision required to handle the demanding conditions and heavy loads encountered in construction projects.

2. Agricultural Machinery:

– Many agricultural machines, including tractors, combine harvesters, and sprayers, utilize hydraulic cylinders for critical operations. Hydraulic cylinders are used to control the movement of attachments, such as front loaders, backhoes, and plows. They enable functions like lifting and lowering implements, adjusting cutting heights, and controlling the positioning of harvesting equipment. Hydraulic cylinders enhance efficiency and productivity in agricultural operations.

3. Material Handling Equipment:

– Hydraulic cylinders are integral components of material handling equipment, such as forklifts, pallet jacks, and cranes. These machines rely on hydraulic cylinders to lift and lower loads, tilt platforms or forks, and control the movement of lifting mechanisms. Hydraulic cylinders provide the necessary strength and precision to handle heavy loads and ensure safe and efficient material handling operations.

4. Industrial Machinery:

– Various industrial machinery and equipment heavily rely on hydraulic cylinders for critical functions. Examples include hydraulic presses, injection molding machines, metal-forming machines, and hydraulic-powered robots. Hydraulic cylinders enable precise control of force and movement in these applications, allowing for accurate shaping, pressing, and assembly processes.

5. Mining Equipment:

– Hydraulic cylinders are extensively used in mining machinery and equipment. Underground mining machines, such as continuous miners and longwall shearers, utilize hydraulic cylinders for cutting, shearing, and roof support operations. Surface mining equipment, including hydraulic shovels, draglines, and haul trucks, rely on hydraulic cylinders for tasks like bucket movement, boom extension, and vehicle suspension.

6. Automotive Industry:

– The automotive industry extensively utilizes hydraulic cylinders in various applications. Hydraulic cylinders are employed in vehicle suspension systems, power steering systems, convertible tops, and hydraulic brake systems. They enable smooth and controlled movement, precise steering, and efficient braking in automobiles.

7. Aerospace and Aviation:

– Hydraulic cylinders are utilized in aerospace and aviation applications, such as aircraft landing gear systems, wing flaps, and cargo handling equipment. Hydraulic cylinders provide the necessary force and control for extending and retracting landing gear, adjusting wing flaps, and operating cargo doors, ensuring safe and reliable aircraft operations.

8. Marine and Offshore Industry:

– Hydraulic cylinders are essential components in marine and offshore equipment, including ship cranes, winches, and hydraulic-powered anchor systems. They enable lifting, lowering, and positioning of heavy loads, as well as the control of various marine equipment.

These are just a few examples of machinery and industries that heavily rely on hydraulic cylinders. The versatility, power, and precise control offered by hydraulic cylinders make them indispensable in a wide range of applications, where controlled linear motion and force are essential.

China Hot selling Cll Type Single Acting Load Return Large Tonnage Lock Nut Hydraulic Cylinder   vacuum pump design		China Hot selling Cll Type Single Acting Load Return Large Tonnage Lock Nut Hydraulic Cylinder   vacuum pump design
editor by CX 2023-11-16

China high quality Single Acting High Tonnage Lock Nut Hydraulic Jack Hydraulic Cylinder 700 Bar 10000 CZPT Lift Hydraulic Cylinders vacuum pump booster

Product Description

1 YEAR WARRANTY AND EXCELLENT SERVICE
7 DAYS REFUND PAYMENT IN CASE OF QUALITY
24 HOURS SMOOTHLY COMMUNICATION

Product Description

 Hydraulic Cylinder Jack

Capacity: 50-800ton
Stroke: 50-300mm
Max.pressur: 700bar
 

SJL Series Single-Acting High Tonnage Hydraulic Cylinders 
 

1. Single acting, loads return.
2.Special painted surface to increase corrosion resistance.
3.Lock nut ensure the safety of long time load holding.
All model include quick couplings (NPT3/8″-18) and dust-proof cap.
4.Overflow port function could limit the stroke.
5.The exclusive guide Ring is designed absorbs eccentric loading without galling cylinder parts,reduces wear and extending life.
6.Removable hardened saddles protect plunger during lifting and pressing.
7.Double-acting mechanical lock nut cylinder could be customized.

     

Cylinder Capacity Stroke Model Number Cylinder Effective Area Oil Capacity Collapsed Height Extended Height Outside Dia. Cylinder Bore Dia Plunger Dia.(Thread) Base to Advance Port Saddle Dia. Saddle Max.Tilt Angle Lock nut Height Weight
        A B C D E F H R S  
ton(KN) (mm) (cm2) (cm3) (mm) (mm) (mm) (mm) (mm) (mm) (mm)   (mm) (kg)
50
(550)
50 SJL50-50 78.5 392 192 242 140 100 Tr99x4 24 90 30 18
100 SJL50-100 78.5 784 242 342 140 100 Tr99x4 24 90 30 25
150 SJL50-150 78.5 1176 292 442 140 100 Tr99x4 24 90 30 33
200 SJL50-200 78.5 1568 342 542 140 100 Tr99x4 24 90 30 41
300 SJL50-300 78.5 2352 442 742 140 100 Tr99x4 24 90 30 53
100
(1077)
50 SJL100-50 153.9 770 213 263 188 140 Tr139x6 26 130 40 46
100 SJL100-100 153.9 1540 263 363 188 140 Tr139x6 26 130 40 57
150 SJL100-150 153.9 2310 313 463 188 140 Tr139x6 26 130 40 68
200 SJL100-200 153.9 3080 363 563 188 140 Tr139x6 26 130 40 79
300 SJL100-300 153.9 4620 463 763 188 140 Tr139x6 26 130 40 101
150
(1588)
50 SJL150-50 226.9 1134 209 259 228 170 Tr159x6 49 160 38 56
100 SJL150-100 226.9 2269 259 359 228 170 Tr159x6 49 160 38 70
150 SJL150-150 226.9 3403 309 459 228 170 Tr159x6 49 160 38 83
200 SJL150-200 226.9 4538 359 559 228 170 Tr159x6 49 160 38 97
300 SJL150-300 226.9 6806 459 759 228 170 Tr159x6 49 160 38 124
200
(2198)
50 SJL200-50 314 1570 243 293 268 200 Tr199x6 51 186 52 93
150 SJL200-150 314 4712 343 493 268 200 Tr199x6 51 186 52 131
300 SJL200-300 314 9423 493 793 268 200 Tr199x6 51 186 52 189
300
(3434)
50 SJL300-50 490.6 2453 295 345 320 250 Tr249x6 59 236 60 179
150 SJL300-150 490.6 7359 395 545 320 250 Tr249x6 59 236 60 240
300 SJL300-300 490.6 14718 545 845 320 250 Tr249x6 59 236 60 331
400
(4308)
50 SJL400-50 615.4 3077 335 385 370 280 Tr279x6 70 256 70 266
150 SJL400-150 615.4 9231 435 585 370 280 Tr279x6 70 256 70 345
300 SJL400-300 615.4 18462 585 885 370 280 Tr279x6 70 256 70 464
500
(5114)
50 SJL500-50 803.8 4019 375 425 420 320 Tr319x6 80 306 80 358
150 SJL500-150 803.8 12057 475 625 420 320 Tr319x6 80 306 80 454
300 SJL500-300 803.8 24114 625 925 420 320 Tr319x6 80 306 80 597
600
(6300)
50 SJL600-50 1017.4 5087 395 445 500 360 Tr359x6 85 346 85 490
150 SJL600-150 1017.4 15261 495 645 500 360 Tr359x6 85 346 85 614
300 SJL600-300 1017.4 30522 645 945 500 360 Tr359x6 85 346 85 800
800
(8790)
50 SJL800-50 1256 6280 455 505 550 400 Tr399x6 100 386 100 843
150 SJL800-150 1256 18840 555 705 550 400 Tr399x6 100 386 100 1571
300 SJL800-300 1256 37698 705 1005 550 400 Tr399x6 100 386 100 1306

All SAIVS Hydraulic Lifting Cylinders Jack go with calibration certificates,
Your Requirements Can Be Customized, Please Contact Us Freely!

Detailed Photos

  
 

 

800 T Single-Acting Lock – Nut Hydraulic Cylinders

Removable hardened saddles protect plunger during lifting and pressing.
According to different work environment, special cylinder could be customized.

SAIVS is a professional manufacturer in hydraulic tools and products, Hydraulic lifting cylinder & jack and Hydraulic pumps.

Our full rang of popular hydraulic cylinder reserviors including jacking, pushing, pulling, supporting etc.

Our hydraulic products have been widely used in petrochemical, Building, shipbuilding, steel plant and heavy constructions areas etc.

 

 

Application

Certifications

Packaging & Shipping

Company Profile

Established in HangZhou, China, CHINAMFG began as a manufacturer and exporter of different kinds of casting and precision CNC machining components, industrial customized parts. CHINAMFG has the experience to develop thousands of tooling and fixtures in house according to customers’ drawings.

In 2002, hydraulic tools research department was settled and company developed its first line of hydraulic tools and equipment. Today CHINAMFG is reckoned as 1 of the most preferred experienced manufacturer and exporter of hydraulic tools, hydraulic pumps & hydraulic components in the industrial market.

We have more than 200 employees total, that work at casting foundries, CNC machining plant. we have nice reputation in components supply chain, as we have better management system, positive teamwork cooperation and advanced equipment. We obtained certificates of TS16949, ISO9001, ISO14001 and OSHAS ISO 18001.

FAQ

Q: Are you trading company or manufacturer?
A: We are factory with more than 20 years experience.

Q: How long for delivery?
A: Generally it is 15-30days as we are customized service we confirm with customer when place order.

Q: What is the MOQ?
A: It depends on what you are buying. Normally, our minimum order is 1 20′ full container and LCL container (less than a
container load) can be acceptable.

Q: Can you customize my products?
A: Yes, we can customized products with your design drawings like DWG, DXF, DXW, IGES, STEP, PDF etc.

Q: What is your terms of payment?
A: 30% T/T in advance, balance before shipment, or as per discussion.

Q: What about your quality control?
A: * . Checking the raw material after they reach our factory—–Incoming quality control(IQC)
* . Checking the details before the production line operated
* . Have full inspection and routing inspection during mass production—-In-process quality control(IPQC)
* . Checking the goods after they are finished—-Final quality control(FQC)
* . Checking the goods after they are finished—-Outgoing quality control(QC)
* . 100% inspection and delivery before shipment

After-sales Service: Yes
Warranty: 1 Year
Type: Hydraulic Jack
Structure: Hydraulic Jack
Capacity (Load): 50-800 T
Power Source: Hydraulic
Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders contribute to the overall cost-effectiveness of industrial processes?

Hydraulic cylinders play a crucial role in enhancing the overall cost-effectiveness of industrial processes. They offer several advantages and contribute to increased productivity, improved efficiency, reduced maintenance costs, and enhanced operational performance. Here’s a detailed explanation of how hydraulic cylinders contribute to the cost-effectiveness of industrial processes:

1. High Power Density:

– Hydraulic cylinders provide a high power-to-weight ratio, allowing them to generate substantial force in a compact design. This power density enables the use of smaller and lighter equipment, reducing material and manufacturing costs, and increasing the efficiency of industrial processes.

2. Precise Force and Position Control:

– Hydraulic cylinders offer precise force and position control, allowing for accurate movement and positioning of machinery or workpieces. This level of control enhances process efficiency, reduces material waste, and improves overall product quality. Precise force control also minimizes the risk of equipment damage, further reducing maintenance and repair costs.

3. High Load Handling Capacity:

– Hydraulic cylinders are known for their ability to handle high loads. They can exert significant force, making them suitable for heavy-duty industrial applications. By efficiently handling heavy loads, hydraulic cylinders contribute to increased productivity and throughput, reducing the need for additional equipment and streamlining industrial processes.

4. Flexibility and Versatility:

– Hydraulic cylinders offer a high degree of flexibility and versatility in industrial processes. They can be easily integrated into various types of machinery and equipment, allowing for diverse applications. This adaptability reduces the need for specialized equipment, resulting in cost savings and increased operational efficiency.

5. Energy Efficiency:

– Hydraulic systems, including hydraulic cylinders, can be designed to operate with high energy efficiency. By utilizing efficient hydraulic circuit designs, advanced control systems, and energy recovery mechanisms, hydraulic cylinders minimize energy waste and reduce operational costs. Energy-efficient hydraulic systems also contribute to a more sustainable and environmentally friendly industrial operation.

6. Durability and Longevity:

– Hydraulic cylinders are built to withstand demanding industrial environments and heavy usage. They are constructed with robust materials and undergo stringent quality control measures to ensure durability and longevity. Their ability to withstand harsh conditions and repetitive motion reduces the need for frequent replacements, minimizing downtime and maintenance costs.

7. Reduced Maintenance Requirements:

– Hydraulic cylinders require relatively low maintenance compared to other types of actuators. Properly designed hydraulic systems with efficient filtration and contamination control mechanisms can prevent damage to the cylinders and extend their service life. Reduced maintenance requirements result in lower downtime, decreased labor costs, and improved cost-effectiveness of industrial processes.

8. System Integration and Automation:

– Hydraulic cylinders can be seamlessly integrated into automated industrial processes. By incorporating hydraulic cylinders into automated systems, tasks can be performed with precision and repeatability, reducing human error and optimizing efficiency. Automation also allows for continuous operation, increasing productivity and overall cost-effectiveness.

9. Cost-Effective Replacement:

– In situations where hydraulic cylinders require replacement or repair, the cost-effectiveness of the process is still maintained. Hydraulic cylinders are typically modular in design, allowing for easy replacement of individual components or complete units. This modularity reduces downtime and associated costs, as only the affected components need to be replaced, rather than the entire system.

In summary, hydraulic cylinders contribute to the overall cost-effectiveness of industrial processes through their high power density, precise control capabilities, high load handling capacity, flexibility, energy efficiency, durability, reduced maintenance requirements, system integration, and cost-effective replacement options. Their ability to enhance productivity, efficiency, and operational performance while minimizing maintenance and downtime costs makes hydraulic cylinders a valuable component in various industrial applications.

hydraulic cylinder

Advancements in Hydraulic Cylinder Technology Improving Corrosion Resistance

Advancements in hydraulic cylinder technology have led to significant improvements in corrosion resistance. Corrosion is a major concern in hydraulic systems, especially in environments where cylinders are exposed to moisture, chemicals, or corrosive agents. These advancements aim to enhance the durability and longevity of hydraulic cylinders. Let’s explore some of the key advancements in hydraulic cylinder technology that have improved corrosion resistance:

  1. Corrosion-Resistant Materials: The use of corrosion-resistant materials is a fundamental advancement in hydraulic cylinder technology. Stainless steel, for example, offers excellent resistance to corrosion, making it a popular choice in marine, offshore, and other corrosive environments. Additionally, advancements in metallurgy have led to the development of specialized alloys and coatings that provide enhanced corrosion resistance, extending the lifespan of hydraulic cylinders.
  2. Surface Treatments and Coatings: Various surface treatments and coatings have been developed to protect hydraulic cylinders from corrosion. These treatments can include electroplating, galvanizing, powder coating, and specialized corrosion-resistant coatings. These coatings create a barrier between the cylinder surface and corrosive elements, preventing direct contact and inhibiting the onset of corrosion. The selection of appropriate coatings depends on the specific application and environmental conditions.
  3. Sealing Technology: Effective sealing systems are crucial in preventing water, moisture, and contaminants from entering the cylinder and causing corrosion. Advancements in sealing technology have led to the development of high-quality seals and advanced sealing designs that offer superior resistance to corrosion. These seals are typically made from materials specifically engineered to withstand corrosive environments, ensuring long-term sealing performance and minimizing the risk of corrosion-related issues.
  4. Improved Surface Finishes: The surface finish of hydraulic cylinders plays a role in their resistance to corrosion. Advancements in machining and polishing techniques have allowed for smoother and more uniform surface finishes. Smoother surfaces reduce the likelihood of corrosion initiation and make it easier to clean and maintain hydraulic cylinders. Additionally, specialized finishes, such as passivation or chemical treatments, can be applied to further enhance corrosion resistance.
  5. Environmental Protection Features: Hydraulic cylinders can be equipped with additional features to protect against corrosion. These features may include protective boots, bellows, or shields that guard vulnerable areas from exposure to corrosive agents. By incorporating these protective elements into the design, hydraulic cylinders can withstand harsh environments and minimize the risk of corrosion-related damage.

In summary, advancements in hydraulic cylinder technology have significantly improved corrosion resistance. The use of corrosion-resistant materials, advanced surface treatments and coatings, innovative sealing technology, improved surface finishes, and the incorporation of environmental protection features have all contributed to enhanced durability and longevity of hydraulic cylinders in corrosive environments. These advancements ensure reliable performance and reduce the maintenance and replacement costs associated with corrosion-related issues.

hydraulic cylinder

How do manufacturers ensure the quality and compatibility of hydraulic cylinders?

Manufacturers employ various measures to ensure the quality and compatibility of hydraulic cylinders, ensuring that they meet industry standards, performance requirements, and the specific needs of their customers. Here’s a detailed explanation of the methods and practices used by manufacturers to ensure the quality and compatibility of hydraulic cylinders:

1. Design and Engineering:

– Manufacturers employ skilled engineers and designers who have expertise in hydraulic systems and cylinder design. They use advanced design software and tools to create hydraulic cylinders that meet the desired specifications and performance requirements. Through careful analysis and simulation, manufacturers can ensure that the cylinders are designed to function optimally and provide the necessary force, stroke length, and reliability.

2. Material Selection:

– High-quality materials are crucial for the durability, performance, and compatibility of hydraulic cylinders. Manufacturers carefully select materials such as steel or other alloys based on their strength, corrosion resistance, and suitability for hydraulic applications. They source materials from reputable suppliers and perform quality checks to ensure that the materials meet the required standards and specifications.

3. Quality Control:

– Manufacturers implement robust quality control processes throughout the production of hydraulic cylinders. This includes rigorous inspections and tests at various stages of manufacturing, from raw material inspection to final assembly. Quality control personnel perform dimensional checks, surface finish inspections, and functional tests to verify that the cylinders meet the specified tolerances, performance criteria, and compatibility requirements.

4. Testing and Validation:

– Hydraulic cylinders undergo testing and validation procedures to ensure their performance, reliability, and compatibility. Manufacturers conduct various tests, such as pressure testing, leakage testing, load testing, and endurance testing. These tests simulate real-world operating conditions and verify that the cylinders can withstand the expected loads, pressures, and environmental factors. Additionally, manufacturers may perform compatibility testing to ensure that the cylinders can integrate seamlessly with other hydraulic system components.

5. Compliance with Standards:

– Manufacturers adhere to industry standards and regulations to ensure the quality and compatibility of hydraulic cylinders. They follow standards such as ISO 9001 for quality management systems and ISO 6020/2 or ISO 6022 for hydraulic cylinders. Compliance with these standards ensures that the manufacturing processes, quality control measures, and product performance meet internationally recognized benchmarks.

6. Certification and Accreditation:

– Manufacturers may obtain certifications and accreditations from recognized organizations to demonstrate their commitment to quality and compatibility. Certifications such as ISO certifications or third-party certifications provide assurance to customers that the hydraulic cylinders have undergone rigorous evaluations and meet specific quality and compatibility standards.

7. Customer Collaboration:

– Manufacturers actively engage with customers to understand their specific requirements and ensure compatibility. They work closely with customers to gather application-specific details, such as operating conditions, load requirements, and environmental factors. This collaborative approach allows manufacturers to customize hydraulic cylinders and provide solutions that are perfectly matched to the customer’s needs, ensuring compatibility and optimal performance.

8. Continuous Improvement:

– Manufacturers are committed to continuous improvement in their processes and products. They invest in research and development to incorporate the latest technologies, materials, and manufacturing techniques. By staying updated with industry advancements, manufacturers can enhance the quality, performance, and compatibility of their hydraulic cylinders over time.

By implementing effective design and engineering practices, selecting high-quality materials, conducting rigorous quality control, testing and validation procedures, complying with industry standards, obtaining certifications, collaborating with customers, and embracing continuous improvement, manufacturers ensure the quality and compatibility of hydraulic cylinders. These measures help to deliver reliable, high-performance cylinders that meet the diverse needs of industries and applications.
China high quality Single Acting High Tonnage Lock Nut Hydraulic Jack Hydraulic Cylinder 700 Bar 10000 CZPT Lift Hydraulic Cylinders   vacuum pump booster	China high quality Single Acting High Tonnage Lock Nut Hydraulic Jack Hydraulic Cylinder 700 Bar 10000 CZPT Lift Hydraulic Cylinders   vacuum pump booster
editor by CX 2023-11-13